Path Integrals for a Class of P - Adic Schrödinger Equations

نویسنده

  • V. S. VARADARAJAN
چکیده

The theme of doing quantum mechanics on all abelian groups goes back to Schwinger and Weyl. If the group is a vector space of finite dimension over a non-archimedean locally compact division ring, it is of interest to examine the structure of dynamical systems defined by Hamiltonians analogous to those encountered over the field of real numbers. In this letter a path integral formula for the imaginary time propagators of these Hamiltonians is derived.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Higher Order Degenerate Hermite-Bernoulli Polynomials Arising from $p$-Adic Integrals on $mathbb{Z}_p$

Our principal interest in this paper is to study higher order degenerate Hermite-Bernoulli polynomials arising from multivariate $p$-adic invariant integrals on $mathbb{Z}_p$. We give interesting identities and properties of these polynomials that are derived using the generating functions and $p$-adic integral equations. Several familiar and new results are shown to follow as special cases. So...

متن کامل

Quasilinear Schrödinger equations involving critical exponents in $mathbb{textbf{R}}^2$

‎We study the existence of soliton solutions for a class of‎ ‎quasilinear elliptic equation in $mathbb{textbf{R}}^2$ with critical exponential growth‎. ‎This model has been proposed in the self-channeling of a‎ ‎high-power ultra short laser in matter‎.

متن کامل

Functional derivatives Schrödinger equations and Feynman integral

Cutoff Schrödinger equations in functional derivatives are solved via quantized Galerkin limit of antinormal functional Feynman integrals for Schrödinger equations in partial derivatives. Mathematics Subject Classification 2000: 81T08, 81T16; 26E15, 81Q05, 81S40.

متن کامل

Functional derivatives, Schrödinger equations, and Feynman integration

Schrödinger equations in functional derivatives are solved via quantized Galerkin limit of antinormal functional Feynman integrals for Schrödinger equations in partial derivatives. Mathematics Subject Classification 2000: 81T08, 81T16; 26E15, 81Q05, 81S40.

متن کامل

ON p-ADIC FUNCTIONAL INTEGRATION

p-Adic generalization of the Feynman path integrals in quantum mechanics is considered. The probability amplitude Kv(x, t′′; x′, t′) (v = ∞, 2, 3, · · · , p, · · ·) for a particle in a constant field is calculated. Path integrals over Qp have the same form as those over R.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997