Path Integrals for a Class of P - Adic Schrödinger Equations
نویسنده
چکیده
The theme of doing quantum mechanics on all abelian groups goes back to Schwinger and Weyl. If the group is a vector space of finite dimension over a non-archimedean locally compact division ring, it is of interest to examine the structure of dynamical systems defined by Hamiltonians analogous to those encountered over the field of real numbers. In this letter a path integral formula for the imaginary time propagators of these Hamiltonians is derived.
منابع مشابه
Higher Order Degenerate Hermite-Bernoulli Polynomials Arising from $p$-Adic Integrals on $mathbb{Z}_p$
Our principal interest in this paper is to study higher order degenerate Hermite-Bernoulli polynomials arising from multivariate $p$-adic invariant integrals on $mathbb{Z}_p$. We give interesting identities and properties of these polynomials that are derived using the generating functions and $p$-adic integral equations. Several familiar and new results are shown to follow as special cases. So...
متن کاملQuasilinear Schrödinger equations involving critical exponents in $mathbb{textbf{R}}^2$
We study the existence of soliton solutions for a class of quasilinear elliptic equation in $mathbb{textbf{R}}^2$ with critical exponential growth. This model has been proposed in the self-channeling of a high-power ultra short laser in matter.
متن کاملFunctional derivatives Schrödinger equations and Feynman integral
Cutoff Schrödinger equations in functional derivatives are solved via quantized Galerkin limit of antinormal functional Feynman integrals for Schrödinger equations in partial derivatives. Mathematics Subject Classification 2000: 81T08, 81T16; 26E15, 81Q05, 81S40.
متن کاملFunctional derivatives, Schrödinger equations, and Feynman integration
Schrödinger equations in functional derivatives are solved via quantized Galerkin limit of antinormal functional Feynman integrals for Schrödinger equations in partial derivatives. Mathematics Subject Classification 2000: 81T08, 81T16; 26E15, 81Q05, 81S40.
متن کاملON p-ADIC FUNCTIONAL INTEGRATION
p-Adic generalization of the Feynman path integrals in quantum mechanics is considered. The probability amplitude Kv(x, t′′; x′, t′) (v = ∞, 2, 3, · · · , p, · · ·) for a particle in a constant field is calculated. Path integrals over Qp have the same form as those over R.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997